A BOVW Based Query Generative Model
نویسندگان
چکیده
Bag-of-visual words (BOVW) is a local feature based framework for content-based image and video retrieval. Its performance relies on the discriminative power of visual vocabulary, i.e. the cluster set on local features. However, the optimisation of visual vocabulary is of a high complexity in a large collection. This paper aims to relax such a dependence by adapting the query generative model to BOVW based retrieval. Local features are directly projected onto latent content topics to create effective visual queries; visual word distributions are learnt around local features to estimate the contribution of a visual word to a query topic; the relevance is justified by considering concept distributions on visual words as well as on local features. Massive experiments are carried out the TRECVid 2009 collection. The notable improvement on retrieval performance shows that this probabilistic framework alleviates the problem of visual ambiguity and is able to afford visual vocabulary with relatively low discriminative power.
منابع مشابه
Content-Based Image Retrieval using Local Features Descriptors and Bag-of-Visual Words
Image retrieval is still an active research topic in the computer vision field. There are existing several techniques to retrieve visual data from large databases. Bag-of-Visual Word (BoVW) is a visual feature descriptor that can be used successfully in Content-based Image Retrieval (CBIR) applications. In this paper, we present an image retrieval system that uses local feature descriptors and ...
متن کاملA Comparative Study of Encoding, Pooling and Normalization Methods for Action Recognition
Motivation. Bag of visual words (BoVW) models have been widely and successfully used in video based action recognition. One key step in constructing BoVW representation is to encode feature with codebook. Recently, a number of new encoding methods have been developed to improve the performance of BoVW based object recognition and scene classification, but their effects for action recognition ar...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملPrivate Key based query on encrypted data
Nowadays, users of information systems have inclination to use a central server to decrease data transferring and maintenance costs. Since such a system is not so trustworthy, users' data usually upkeeps encrypted. However, encryption is not a nostrum for security problems and cannot guarantee the data security. In other words, there are some techniques that can endanger security of encrypted d...
متن کاملContent-Based Image Retrieval Using Spatial Layout Information in Brain Tumor T1-Weighted Contrast-Enhanced MR Images
This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW) model with partition learning is incorporated into the system to extract info...
متن کامل